在做电商网店的卖家都有一个众所周知的问题,就是在推广方面,生成短链接时,长链接如何转换短链接的细节问题,在长网址转短网址的时候,需要用到短链接生成工具,好的短链接工具可以提升转化率,可直接跳转详情页,减少用户流失率,短链接在线免费生成工具。
编辑导语:数据产品如果只是简单的做一些基础工作,那它的用处就不够;数据产品有很多种类型,每种类型都有创新的机会;随着互联网的发展,数据产品的价值也应该有一些实质性的变化。本文作者分享了关于怎么让数据产品产生价值的方法,我们一起来看一下。
在一个企业内,一只数据团队只会报表,取数、建模和分析是远远不够的;对上,你的贡献会被业务和前台屏蔽,对下,云原生等等技术已经让平台运维变得更为容易。
虽然现在数据中台如火如荼,给了数据团队名义上的机会,考虑到数据中台的本质特征是业务化;但如果你连接触前端的机会都没有,怎么可能能建设好一个业务化的数据中台呢?
很多数据团队在企业内存在感不强,或者是老黄牛的命,是有其深层次原因的——并不会因为数据中台的出现而有什么实质性变化,而只有数据产品才能真正解决数据价值创造最后一公里的问题。
从数据产品的性质划分,一般可以分为三大类:
- 决策分析类产品:主要提供分析服务,比如BI报表系统、分析专题等等。
- 推荐投放类产品:主要提供营销服务,比如营销管理平台,精准广告投放平台等等。
- 数据管理类产品:主要提供采集、开发、挖掘、运维及管理服务,比如数据管理平台等等。
但大多数时候我们的数据产品表现并不惊艳,很多企业对于BI和大数据差不多是一个印象,取数、指标、报表,平台,最多大屏可视化一下,还有什么?
你会发现很多数据产品天生的基因决定了它只能做螺丝钉,做到极致也就是70分,其创造价值的天花板是很低的。
作为传统企业,这几年我们在数据产品的方向探索上还是比较多的;最近正好看到阿里的一张PPT,如下图所示,感觉大家最终还是殊途同归,发现了数据产品真正能创造价值的地方。
阿里提到的很多数据产品,无论是DataWorks,Dataphin还是OneService,都是偏后端的数据产品,它们其实属于数据价值链的中段;而真正能直接创造价值的数据产品,则是上面图示中的阿里妈妈、阿里小贷、观星台、生意参谋、黄金策、嵌入业务中台等等。
而这些服务对象在任何一个企业都具有普适性,也就是说——通过打造为这些对象服务的产品,你的数据产品也许就找到了真正出口;我们应该努力回归第一性原理,从直接能创造价值的地方寻找数据产品的机会。
下面笔者就结合阿里来谈一谈数据产品的机会和前途。
一、赋能管理者
阿里有观星台,其提到主要作为公司的健康晴雨表,分职分权的财报——这就是传统BI做的东西,这是数据团队在一个公司的基本面,使命就是确保数据及时准确、无他。
报表指标做到70分是比较容易的,而从70到100是很难的;你的数据一般只能反映事实,最多做个相对固定的比较,而无法直接提供决策能力;这意味着即使你能在这个上面雕出一朵花,其边际效益还是很低的,你几乎很少有机会能通过产品的完善去影响老板的决策。
考虑到固定的KPI和报表的边际效益很低,因此针对这类数据产品的创新,应该跟随公司的业务重点变化去追求场景化的数据产品解决方案,基于数据中台去快速打造。
比如阿里的双11数字大屏就是这一类场景化的数据产品,但你要知道,它一年的生命只有几天,但它发挥出了应有的价值;这就是场景化解决方案,你说它跟BI有啥本质区别?没有。
其实每个企业都有这个尤里卡时刻,比如运营商每年有校园营销,就应该考虑为校园营销快速定制数据产品,为各类管理者方便看数提供更为便捷的针对性解决方案,不要尝试用一堆大而全的报表指标去淹没管理者。
以下是为校园营销快速定制的数据产品,非常火爆;因为它适配了校园的场景,围绕校园这个实体增加了实时指标、热点地图、校园信息等丰富的要素信息,这也许是BI的未来。
二、赋能合作伙伴
阿里有生意参谋,它这个产品是服务众多的卖家的;因为只有卖家活得好,阿里的电商平台才能活得好,因此他们之间是合作共赢的关系。
其实任何一个企业都有这样一个合作生态,你的数据产品就应该尽力为这些合作伙伴去赋能,这个跟赋能自己的管理者没有区别。
我们在感慨阿里生意参谋强大的时候,其实应该想到马云说的那句话:相信只有别人成功你才能成功。
生意参谋很好的诠释了这一点,但我们有多少企业的数据团队想到了这一点,在这个方面能走出关键的一步?
三、赋能运营
阿里有黄金策,其主要是为用户洞察和营销策划服务的。
运营的一个关键是你能每次看到营销活动的效果,然后基于这个效果去发现问题,找到优化提升的方法,从而优化下一次的营销;但现实中我们大量的营销评估往往仅限于营销了多少用户,订购了多少用户而已。
但什么叫作好,什么叫作不好,我们其实并没有什么量化的标准,我们大多还是靠经验去运营;但企业当前的营销水平跟10年前的营销水平相比,到底有多少的长进?这个问题就像问当前的中医跟1000年前的中医有什么长进一样难以回答。
数据产品本来应该承担这个使命。
但很多传统企业在客户洞察、沙盘推演、渠道投放、营销术语、AB测试、模型迭代等各个方面,都没有很好的数据产品进行支撑。
虽然笔者不知道阿里的黄金策具体做了什么,但肯定是要数据说话。
市场细分、客户洞察、策划手段、投放策略、渠道分配、模型效果等等都应该作为要素逐步融入到了数据产品的设计中,固化到流程中;从而实现运营的自动化和智能化,不会因为一个新手的到来而让运营水平下降一个台阶。
四、赋能业务中台
阿里这里取了个名字,叫作嵌入业务中台,然后有两个强大的数据技术组件:搜索引擎和推荐引擎;的确,这两个东西只有干数据的才能做好。
但深层次的含义其实是这样,数据产品你不能总是冲在最前面,或者你冲在最前面的机会并不多;毕竟先有业务系统才有数据,而有了数据才孕育出了数据产品。
数据产品更多体现价值的机会应是作为一个技术组件,嵌入到企业的任何生产流程中去,嵌入业务中台是一种形式,由此延伸开来就很多了,比如风控模型嵌入业务流程。
嵌入业务中台应是数据产品体现自身价值的蓝海,但要做好有三个前提:
- 业务平台是否有足够的数据驱动意识;
- 数据团队是否有足够的业务水平和足够宽的视野;
- 数据产品的质量是否经得起生产的检验。
五、直接对外变现
前面说得数据产品有一个共同特点,就是你的贡献基本是间接的,而直接对外变现则是数据产品直接从外部获取收益。
阿里的阿里妈妈和阿里小贷是最典型的数据驱动的业务,也是阿里最大的利润来源,一个是广告投放,一个是金融风控。
如果有机会,每一个做数据产品的人都应该努力去尝试,直面外部的客户,获得真正的需求,创造新的产品,获得直接的收益。
由于客户只为有用的东西买单,因此假如你能持续的赚到钱,意味着你的数据产品经受住了市场的检验,这是最大的价值创造。
六、总结
五种数据产品类型,其实蕴含着数据产品创新的机会,如果你已经感受到了数据发展的瓶颈,正困惑于无法找到数据价值的出口,也许从这里可以找到一些启示。
当然我们还在苦苦探索寻找新的机会,你发现了并不代表就能做好,这也是大厂面临的挑战,特别是在产业互联网这个大背景下。